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Laser-induced microscale vortex rings have been generated on a vaporizing tantalum surface,
and their reconnection was studied in the presence of the shock waves on the nanosecond (ns)
time scale. A reach spectrum of the ring structures was obtained, some of which have been
observed for the "rst time. Qualitatively, three classes of interactions were distinguished, on the
basis of relative relation between the shock momentum P

S
and momentum of the circulating

#uid P
C
: interactions in the presence of low-momentum shock waves (P

S
(P

C
); interactions in

the presence of the shock waves with momentum comparable to the momentum of a circulating
#uid (P

S
+P

C
); and interactions in the presence of the shock waves of momentum larger than

momentum of the circulating #uid (P
S
'P

C
). A matrix formalism was introduced for descrip-

tion of the reconnection process which assumes the reconnection as the transition between
various states, and which automatically gives the time ordering of the processes, as well as the
degeneracy of the states. ( 1999 Academic Press
1. INTRODUCTION

LASER-MATTER INTERACTIONS (LMI) at the short time scale (pulse duration), q (30 ns, were
shown to be almost ideal for the study of the vortex "lament generation and self-
organization (SO). The studies performed by our group in the regime of transition from
planar-to-volume vaporization, at q"10 ns, have shown the spontaneous formation of
open- and closed-loop vortex "laments, showing various levels of the organization com-
plexity (Lugomer 1996, 1997; 1998a,b).

Continuing the series of studies, this paper deals with generation of the microscale vortex
rings and their interactions, especially with collision, reconnection and breaking, as a non
linear and nonequilibrium process with strong dissipative character.

The processes taking place in the above-mentioned regime of LMI, are numerous and
very complex. The "rst of them relates to the generation of vortex rings in the explosive
decomposition of a spinodal #uid (liquid Ta) into a gaseous phase on the time scale
410 ns. The spinodal #uid (Samokhin 1998; Samokhin & Uspensky 1997) is generated
during surface superheating of metals in high-power, short-time-scale laser}metal interac-
tions when the surface layer behaves as a dielectric. It thus becomes transparent, enabling
a deep volume absorption of the laser beam. The vapour pressure above the surface
prevents boiling, and causes superheating of the liquid metal (Lugomer 1996; Samokhin
1998, Samokhin & Uspensky 1977). The system is pushed into a metastable region of
a thermodynamic diagram, where thermal conductivity kP0, and speci"c heat C

p
PJ

(Lugomer 1996). The system is not stable, and exists only for a short time, after which it
decomposes into a gaseous phase through microexplosions of surface bubbles, character-
istic of the onset of the &&volume'' boiling. As usually assumed, this transition occurs at
Q +108 W/cm2.
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The second process relates to the explosion of bubbles on the vaporizing surface which
generates vortex "laments organized into spatial structures, ranging from circular (vortex
rings) to very complex, and even to chaotic ones. The vortex ring, as the most simple
structure, exhibits a rotation of each vertical element around the curved axis of the "gure.
The #ow of the subsurface #uid separates at the edge of the explosion crater; a cylindrical
vortex sheet forms, and rolls up into a vortex ring. The #uid velocity associated with
microexplosions is comparable with the velocity of the expelled vapour in laser-driven
vaporization, t&105}106 cm/s, which gives high Reynolds numbers, Re&103}104. Similar
Reynolds numbers were obtained in experiments under highly controlled conditions (Reed
1988; Widnall & Sullivan 1973). Once formed, vortex rings behave as the independent
entities which freely and easily move in the background #uid (surface molten layer).

Another group of processes, characteristic for the high-power laser}matter interactions
on the short time scale, relates to the generation of the shock waves. They travel in all
directions and being re#ected from the sidewalls (of the small sample) they reverberate
thorugh the sample, causing the interaction with surface hydrodynamic structures (vortex
rings). The momentum transferred from the shock wave to the vortex ring causes its
collision with other rings, the result of which is their interaction (Lugomer 1996, 1998;
Lugomer & Maksimovic 1997.

The third group of processes is therefore the vortex ring interaction, the most important
of which is the vortex ring reconnection. Two vortex rings, free to move come into contact
and merge into a single ring, what is called the vortex connection. The vortex ring may then
split to form new vortex rings, which is what is called reconnection (Kida et al. 1989). The
reconnection process that starts on two closed rings, occurs*in a topological sense*by the
foliation on a torus (Tamura 1976). This process is possible under the condition of torus
stability, and under the condition that foliation establishes the &&coherent neighbourhood'',
for any locally foliated manifold. Reconnection is an indication of dominance of dissipative
e!ects over the coherence of structures. The topological changes and a dramatic change of
#uid patterns occur on a small time-scale compared to evolution (Ricca & Berger 1996).
From a dynamical point of view, reconnections take place when the vector "eld lines (vortex
lines), cross each other. If two "eld lines meet, the point of crossing is a true nodal point.
Dissipative e!ects allow the reconnection to proceed through such points. Vortex ring
reconnections have been studied intensively from both theoretical and experimental points
of view. The theoretical approach is generally based on the Biot}Savart model of vortex
"laments which provides initial conditions for a "nite-di!erence scheme for the incompress-
ible Navier}Stokes equation (Asthurst & Meiron 1987).

Approaching motion of the vortex rings may be caused by the Biot}Savart law as
assumed in numerical simulations of Oshima & Izutsu (1988), Kida et al. (1989), Pumir
& Kerr (1987), Asthurst & Meiron (1987), but also by the surface shock waves, which is the
dominant case in laser-material interactions. Vortex ring reconnections are di$cult to be
produced experimentally, and in principle they are limited to jets and to brief discharges of
#uid from an ori"ce (Fohl & Turner 1988). However, in laser}metal interactions they
appear spontaneously and, because of ultrafast cooling after pulse termination, they stay
frozen permanently, thus enabling a posteriori analysis (Lugomer 1996).

2. THE EXPERIMENTAL SYSTEM

A Q-switched Nd : YAG laser of Q&107 W/cm2, (Q(Q
vb
), of pulse duration q"10 ns

and of the spot size 2d&3}4 mm, was used for generation of vortex rings in the
interaction space. Tantalum samples of 1]1]0)05 cm in size were mechanically polished
and cleaned with alcohol. The surface analysis was done by optical and scanning electron
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microscopes. The micrographs have been numerically "ltered by using the Adobe Photo-
shop program.

3. RESULTS AND DISCUSSION

As mentioned in Section 2, laser-generated shock waves travel from the centre of the spot
toward its periphery; from the periphery toward the centre, and "nally, between the front
and back side of the sample (O'Keefe et al. 1973). Their constructive interference at one
point and destructive one at another point and dispersion generate an inhomogeneous
shock- wave "eld with strong in#uence on the vortex ring dynamics and their mutual
interactions. Consequently, vortex ring interactions belong to di!erent classes present in
various regions of the spot. Their classi"cation is based on the relative magnitude of
momentum of the circulating #uid, P

C
, and momentum of the shock wave, P

S
. Qualitatively,

we distinguish a class of interactions in the presence of the low-momentum shocks or in
their absence (P

S
(P

C
); a class of interactions in the presence of shock waves of momentum

comparable to momentum of the circulating #uid (P
S
+P

C
) which disturbs the reconnec-

tion process by deformation of the vortex ring; and a class of interactions in the presence of
high momentum shock waves (P

S
'P

C
), which cause breaking of the cross-linked rings.

3.1. CASE OF (P
S
(P

C
)

3.1.1. General considerations
The cross-linking interaction of two vortex rings follows the scenario described by Fohl and
Turner (1988) based on experimental observations and by Kida et al. (1989) and Oshima
& Izutsu (1988) based on the numerical simulations.

Two ring vortices are located in close vicinity at an angle, Figure 1. The vorticity is
distributed parallel to the centrelines of the vortex rings and distributed counterclockwise
for one ring and clockwise for another one. Within each cross-section, vorticity is given by
the Gaussian form (Kida et al. 1989)

u(r)"u
0

expA
!r2

p2 B, (1)

where r is the distance from the core centre, and u
0

and p (core size) are constants. The
circulation C of each ring is nu

0
p2 (Kida 1989). Figure 1(a) corresponds to the initial phase

of reconnection when two rings touch each other. They disappear at the point of contact by
annihilation of vorticity of opposite sign. Then follows merging of the two rings into a single
distorted ring by &&cut-and-connect'' (Kida et al. 1989; Oshima & Izutsu 1988).

Figure 1(b) corresponds to the second phase of the reconnection scenario, where the
vortex tube with a saddle pro"le is formed with increasing radius of curvature. The two
antiparallel portions of the saddle approach each other as they are straightened (Kida et al.
1989; Oshima and Izutsu 1988). As they become straight their approach is stopped before
contact is established. Another reconnection process happens in this moment; the new
&&bridges'' appear on the front side of the vortex tube at the border between the straight and
circular parts of the tube. As a result, a merged vortex tube changes topologically into two
rings connected by two &&legs'', which represents the third phase of the reconnection
scenario. The cross-linked rings seen in Figure 1(c), can be attributed to the third phase,
with the bridges on the rings established and with the leg-tubes signi"cantly straightened.

More complex structures, also corresponding to phase 3, consisting of two knotted rings
cross-linked with the third one, as can be seen in Figure 1(d). This structure (observed for



Figure 1(a}d). Caption on next page.
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the "rst time) represents a ring with the Hopf bifurcation cross-linked with the other
ring and indicates the chain of events which are time-ordered. Time ordering relates to the
fact that the vortex ring must "rst bifurcate generating the Hopf link (knotted knot)
(Lugomer 1997), and then it may establish the cross-linking with another ring in its vicinity
(the reverse process is not possible, for purely topological reasons). This, at the same time
indicates that the fastest process which occurs "rst has a lower order of complexity and then
follows a slower one of a higher order of complexity. Thus, this ordering is two-fold:
according to increasing order of topological complexity and according to decreasing
process rate.

3.1.2. Description of the reconnection by a matrix formalism
The open-loop and the closed-loop vortex "lament structures are usually described by the
skein relations, i.e., by the recursion relations relating the knot invariants of knots whose
diagrams are identical (Jones 1990; Wu 1992). Another way of description is based on the
Alexander polynomials relating the knot invariants of the oriented knots and, "nally, vortex
rings and other knotted and unknotted vortex "laments can be described by the Jones
polynomials, based on the braid group representation (Wu 1992).

However, reconnection of the vortex "laments of the open-loop or of the closed-loop type
is a more di$cult problem.

As a local process, reconnections are di$cult to describe and are still a puzzle for
theorists. One simple mathematical approach, which must be mediated by detailed know-
ledge of the particular physical process, involves techniques of &&oriented surgery'', per-
formed on the bundle of constitutive vector "eld lines (strands). When two strands of the
bundle come into contact, vector lines of one strand may recombine with vector lines of the
other by a &&cut-and-connect'' process. The e!ect is local, but its consequences are global (on
the topology). When this happens, we have a complete change of the topology of the system.
(Ricca & Berger 1996).

Instead of following the above way of description we introduce new, very simple
one, based on matrix formalism. We assume the vortex rings, unknotted and knotted ones
(Hopf link) as well as the reconnected rings2, to be the states of the organized circulating
#ow, described by the corresponding matrices. Instead of consideration of the processes
&&cut-and-connect'' we consider the transition between two states. Transition between two
states is described by the action of the particular operator O, on the matrix of the particular
state.

The above ring structures [shown in Figure 1(a}d)] may be symbolically described as
follows: we assume the ring con"gurations to be a states, denoted X, >, Z,= and K, as
schematically shown in Figure 1(e). The states X and X@ correspond to the clockwise and
counterclockwise rotation and can be represented by the 3]3 matrices X and X@,
b
Figure 1. Reconnection of two vortex rings on liquid Ta surface without presence of the shock waves. (a) Two

rings in the instant of touching Magni"cation M&2300]. Numerical "ltering reveals thinning of the rings
around the touching point, which corresponds to the initial phase of reconnection. (b) Two rings after "rst
reconnection, which corresponds to the second phase of reconnection; M&1600x. [Numerically generated
corresponding form is given, for comparison; of from Oshima & Izutsu (1988)]. (c) Two rings after second
reconnection, corresponding to the third phase of reconnection; M&1800]. Long, stretched leg-tubes are clearly
seen. (d) Two rings with the Hopf link, cross-linked with the third one, corresponding to the phase 3 of
reconnection. Flattening of both leg-tubes indicates di!usive spreading and core deformation because of interac-
tion with the background #uid. [Numerically generated corresponding form is given for comparison; from Oshima

& Izutsu (1988)]
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respectively:

X"A
1 0 0

0 1 0

0 0 1B , X@"A
0 0 !1

0 !1 0

!1 0 0B . (2)

The structure of the matrices X and X@ indicates that the states X and X@ are mirror states:
the ring with right rotation is transferred into the ring with the left rotation by the mirror
plane [Figure 1(e)].

The state > is a Hopf link represented by the matrix

Y "A
1 0 !1

0 !1 0

!1 0 1B .

It can be obtained from the state X by the operation

Y"O
1
X,

where O
1

is the operator

O
1
"A

1 0 !1

0 !1 0

!1 0 1B . (3)

The structure of the Y matrix indicates that the > state lies not on one, but two planes.
[The Hopf link is usually represented by two rings that lie in two perpendicular planes,
Figure 1(e)].

The state Z (corresponding to the cross-linked rings of clockwise and counterclockwise
vorticity), is represented by the matrix

Z "A
1 0 1

0 0 0

1 0 1B
and obtained by the operation

Z"O
2
(X 'X@),

where

O
2
"A

!1 0 !1

0 0 0

!1 0 !1B (4)

The symmetric matrix Z indicates that the state Z comprises one mirror plane; the
vertical one, as can be seen in Figure 1(e).
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The states X, > and Z are the basic states, while = and K are the combined states
obtained by the action of the operators O

1
and O

2
on the matrices X and X@:

W"O
2
M[(O

1
X)X@]"A

!2 0 2

0 0 0

!2 0 2B"2 A
!1 0 1

0 0 0

!1 0 1B (5)

and

K"O
2
M[(O

1
X) ' (O

1
X@)]N" A

4 0 !4

0 0 0

!4 0 4B"4 A
1 0 !1

0 0 0

!1 0 1B . (6)

Factors 2 and 4 in equations (5) and (6) indicate the existence of two and four equivalent
states= and K, respectively. These degenerate states are established by di!erent combina-
tions in the ring connection, as shown in Figure 1(f ).

The processes described by equations (5) and (6) are time ordered, and therefore do not
commute. It is easy to show that states= and K can only be generated by the order of the
operations given in equations (5) and (6), respectively. Namely, the change of the order, i.e.,

W"O
1
[O

2
(X 'X@)]"O

1
Z (7)

is excluded, since O
1
Z"0, which is an argument in favour to the conclusion about time-

ordered processes based on topological arguments.

The matrices of the basic states X, X@ are regular matrices (Kurepa 1967), i.e

Det XO0; Det X@O0. (8)

On the other hand, determinants of derived states >, Z, = and K, vanish:

Det Y"0' DetZ"0; DetW@"0; Det K"0, (9)

indicating that these matrices are singular. Consequently, the columns (rows) of their
derived states are linearly dependent (Kurepa 1967).

3.2. CASE OF P
4
+P

#

Consider the case when the momentum transferred from the shock wave to the vortex
ring is comparable to the momentum of the circulating #uid. The momentum of the #uid
circulation preserves the ring's topology and stability. The transfer of the momentum of the
shock wave to the ring causes the additional dissipative process like the ring deformation.

3.2.1. Deformation before cross-linking
Low-intensity shock waves may cause deformation of one or both rings by circumferential
core deformation, which according to Widnall & Sullivan (1973) appears as a 3-D
sinusoidal oscillation [Figure 2(a)]. A more complex case appears when one or both rings
are elliptically deformed and, in addition, strongly twisted [Figure 2(b,c)]. Whenever
torsional deformation of closely spaced rings was observed, the cross-linking did not take
place. In principle, deformation of two vortex rings is a symmetry breaking process which
generates a structure of a lower symmetry. In addition, it may even increase their order of
topological complexity, thus changing the cross-linking process from the fast into the slow



Figure 1 (continued). (e) Schematic representation of the states X, >, Z, = and K. (f) Twofold and fourfold
degenerate states w and K de"ned by the number of possible cross-linkings.
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one. If this process takes a longer time than the pulse duration, the cross-linking does
not happen. Thus, at a given time scale, deformation of the rings suppresses their cross-
linking.

3.2.2. Deformation during cross-linking
An interesting type of structure (not reported previously) is shown in Figure 2(d). This
structure may be attributed to deformation that coincides with cross-linking in the presence
of a turbulent "eld. Two rings are cross-linked without stretching, which seems to be
characteristic of very fast reconnection at low Reynolds numbers. According to Asthurst
& Meiron (1987) and as discussed by Pumir & Kerr (1987), every fast reconnection for
Reynolds numbers (de"ned by the ratio C/l, of the circulation divided by viscosity) between
100 and 1000 occurs without stretching. A very speci"c characteristic of the object in Figure
2(d) is the cross-linking which consists of a single tube lying out of the cross-linking plane,
actually in the plane perpendicular to it. However, a detailed look on the enlarged and
numerically "ltered micrograph indicates that the cross-linking tube is not a single one, but
two tubes spirally wrapped, with one or perhaps two spiral turns. This cannot be compared
with any experimental or numerically generated pattern of reconnection reported in
literature. One possible comparison is possibly with the suggestion of Asthurst & Meiron's
(1987) that reconnection may occur in a turbulent #ow "eld. In our case the turbulent "eld



Figure 2. Deformed vortex rings by the shock waves prior to reconnection. (a) Two vortex rings (one deformed
by 3-D circumferential oscillation) approach each other. Magni"cation, M&1100]. (b) One twisted and
elliptically deformed vortex ring; M&1800]. (c) Two twisted and elliptically deformed rings at distance d(p
(smaller than the core size), which do not undergo cross-linking. Tiny sharp line separating the two rings is clearly
seen; M&1800]. (d) The cross-linked rings with the short leg-tubes. Magni"cation and numerical "ltering reveal

that the leg-tubes are spirally wrapped as shown on schematic illustration.
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(local) is caused by weak shock waves. According to this speculation and calculations done
for the circulation ratio of 2 : 1, the two tubes are spirally wrapped. This occurs in the
presence of axial #ow associated with tube stretching. However, the tube stretching does not
occur in our case, and a doubt remains whether if the interpretation of Asthurst & Meiron
(1987) is (completely) applicable to the case observed.
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3.2.3. Deformation after cross-linking
Deformation of the vortex structures may occur if the shock wave strikes the rings after
cross-linking, through deformation of the cross-linking tubes (&&legs''), which can be seen in
Figure 3(a). Magni"cation and numerical "ltering reveal that the legs connecting rings are
deformed by buckling caused by axial compression.

The shock waves may even cause a core collapse by a large spreading of the cross-linking
tubes (&&legs''), as shown in Figure 3(b). The core spreading of about three times of the initial
core size takes place tangentially to the line of discontinuity, which may be assumed to be
a shock front, and which is almost normal to the tube &&legs''. According to Erlbacher et al.
(1991) when the shock is normal to the vortex axis, a deceleration of the vortex which may
lead to its breakdown takes place. A large core spreading indicates a very fast (abrupt)
deceleration of #uid (in comparison with a slow core spreading caused by the viscous
Figure 3. Deformation of the cross-linked structures. (a) Bedding of the tubular legs. Magni"cation,
M&2300]. View of the tube at the buckling point, and schematic diagram. (b) Deformation (and collapse of the
tubular legs between cross-linked rings, with di!usive spreading. Magni"cation (M&2300])) and schematic

reconstruction of the process.
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e!ects). The process which leads to spreading of the core vorticity turns every vortex tube in
the opposite direction because of their antiparallel vorticity. However, notice that the
bridges [see description of Kida et al. (1989)] stay una!ected.

CASE OF P
S
'P

C

Very strong shock waves may cause either violent motion of one ring toward another one at
rest as shown in Figure 4(a), or the acceleration of two rings and their collision (by he shocks
from opposite sides) as shown in Figure 4(b). These rings approach each other under an
angle of &233 what according to Fohl & Turner (1988) this leads to a &&double ring
formation'' i.e., to reconnection. Since the rings collide with great velocity this process is
accompanied by a series of successive phenomena, summarized in (i)}(v) in the following.

(i) Interaction of the rings with shock waves opens the possibility for momentum transfer,
and consequently for a change of the circulation, !, of the vorticity u, etc. This manifests
itself as core thickening, which occurs on the same (right) side of the cross-linked rings
[Figure 4]. Similarly, the core thinning occurs on the left side of both rings [Figure 4].
Thus, the core thickening and thinning seem to occur simultaneously on opposite sides of
the rings. Magni"cation and numerical "ltering reveal more details of this structure,
[Figure 4(c)].

(ii) Shortening of the cross-linking legs as a consequence of the axial compression of the
shocks can be seen in Figure 4(b). These legs are much shorter than the legs of the
cross-linked rings in the absence of the shock waves.

(iii) Backward re#ection of the shock waves from both sides of the cross-linked rings
causes a ripple pattern with a characteristic phase shift [Figure 4(b)].

(iv) Generation of singularities in vorticity and of the nodal shape of the core of both
rings can be seen in Figure 4(b). Numerical study of the vortex ring reconnection by
Asthurst & Meiron (1987) has shown that the nodal shape appears through a singularity in
the core vorticity. They have found that distortion of the "lament only occurs over an arc
which is less than 10% of the initial ring circumference. The small arc segment is frozen in
time, i.e., the arc length within this region grows, with a resultant reduction in core size to
conserve the vorticity volume. Then self-similar growth pattern appears in the form of
modules along the "lament generated at points where the axial strain is zero. This type of
dynamics leads to singularity in "nite time as described by Sigia & Pumir (1985).

Figure 4(c) indicates that singularities in the core vorticity caused by the shock waves
take place after ring reconnection. Both rings are shrunk to zero vorticity at singular points,
giving rise to a relatively small number of arc segments of vorticity. Distortion of the core is
signi"cant and occurs on all segments regardless of their length or curvature. Therefore,
thickness of the segment core is not constant but varies along its length what indicates the
presence of oscillations in the core. This further indicates that a vortex ring during
interaction with the shock wave is not frozen, i.e., its core size, p, changes in time very fast
and causes the volume vorticity not to be necessary conserved.

(v) In contrast to the case studied by Asthurst & Meiron (1987), Figure 4(c) indicates that
a real break occurs in all nodal points of both rings. Broken segments are separated from
each other and moved from their position, thus disturbing the circular geometry of the
rings. The largest arc segment is strongly bent towards the centre on the same (right) side of
both rings. This bending of the arc segment was not observed previously, neither experi-
mentally nor in numerical simulations.

The volume of the broken segments, <, (the fragmented vorticity volume), was found by
measurement of the length of the arc segments, s, and of the core diameter, p. Measurements
of p have been done at three positions on every segment and the average values were used.



Figure 4. Collision of two vortex rings by strong shock waves. (a) Acceleration of one ring toward another one
at rest; M&2300]. (b) Collision of two accelerated rings at a angle of &233; M&1100]. (c) Magni"cation and
numerical "ltering reveals a details of the broken rings into arc segments. Schematic illustration represents the arc

segments separated by nodal points of singularity.
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Figure 4 (continued). (d) Log}log plot of the volume vorticity of broken segments of the length s.
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Figure 4(d) gives the volume, <, as a function of the length of the segment s, and suggests
a dependence of the type

<J sD, (10)

where D is the slope of the log-log plot: D+1)66"5
3
. The exponent, D, is the fractal

dimension of the ring breaking into segments of vorticity, caused by the shock waves.
This seems to be one of the "rst observations of vortex ring fragmentation under direct

impact by a shock wave. It reveals that the vortex ring gets broken into pieces of arc-type
"laments which still keep their vorticity. No (signi"cant) di!usion spreading caused either
by the shock wave, or by the viscous interaction with the background #uid, is seen. This
indicates the existance of &&hard core'' vorticity, similar to the case of breaking the braided
vortex "laments into pieces by the strong shock generated by Q-switched ruby laser at
q"24 ns (Lugomer & Pedarnig 1997).

Increasing the time scale of the interaction (longer pulse duration) to above 30 ns seems
to result in structures that cannot be identi"ed (reorganized) because of core spreading via
viscous interaction with the background #uid.

The time scale of 10 ns at which the vortex ring interactions were studied, is &105 times
shorter than the scale of Oshima & Izutsu (1988)* to our knowledge the shortest time scale
reported up to now. These experiments have demonstrated that a complete vortex ring
reconnection process may occur even on an extremely short time-scale, thus positively
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answering the question that arose in the literature in this connection. These experiments
have also demonstrated the existence of a reach spectrum of dynamical phenomena
(associated with the ring reconnection), of a higher topological complexity than in the
absence of shock waves.

4. CONCLUSION

Vortex rings generated by the bubble explosion in LMI at a short time-scale are put in
motion by the surface shock waves. Transfer of momentum from the shock waves to the
rings causes their collision and reconnection. All cases observed on 10~8 s scale are
classi"ed into three dynamical regimes on the basis of the relative relation of the P

S
with

respect to the P
C
. Summarizing the characteristics of these regimes it can be said that an

increase in P
S

(momentum transferred to the rings) causes additional dissipative processes
on the ring, such as bifurcation, torsion, etc., which in general, hinders the reconnection
process. In cases when the hindering becomes large (in comparison with pulse duration), the
reconnection may be completely suppressed.

It was shown that the e!ects of the shock waves on the reconnection process depend not
only on the momentum transferred to the rings, but also on the time correlation between the
moment of the shock arrival and the time (stage) of the reconnection process (before
beginning of reconnection, during reconnection, or after reconnection). It was also shown
that very large shock intensity (large P momentum transfer) causes ring instability (the "rst
condition of Tamura is not ful"lled), and its fragmentation into pieces, which has a fractal
nature.

For description of the reconnection process of the vortex rings, the matrix formalism is
introduced. Assuming the unknotted knots (vortex rings), the knotted knots (Hopf link) the
reconnected rings and their combinations to be the states, all the processes that give rise to
these structures are assumed to be transformations from one state to another. The matrix
formalism enables the transition from one state to another to be described by the action of
the particular operator on the matrix of the particular state. This description automatically
gives the time ordering of the processes.
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